Exam Symmetry in Physics

Date	June 29, 2023
Time	8:30 - 10:30
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- Use of a calculator is allowed
- All subquestions (a, b, c) of the three exercises have equal weight
- Illegible answers will be not be graded
- Good luck!

e.

Exercise 1

Consider the methane molecule CH_4 depicted in the figures and its *rotational* symmetry group $G_M \cong A_4$.

(a) Identify all rotations that leave the methane molecule invariant. Reflections do not need to be considered.

(b) Divide the group elements of G_M into conjugacy classes (e.g. using geometric arguments) and determine the dimensions of the irreducible representations of G_M .

(c) Determine the characters of the three-dimensional vector representation of G_M and use them to determine whether the symmetries allow for an invariant vector, such as a permanent electric dipole moment of the molecule.

Exercise 2

Consider the group O(3) of real orthogonal 3×3 matrices and its action on a rank-2 tensor σ_{ij} (*i*, *j* can take the values 1, 2, and 3). The defining (or vector) representation of O(3) is the irreducible representation denoted by D^V .

(a) Show that $\sigma_{ij} = x_i y_j$ transforms according to $D^V(g) \sigma D^V(g)^T$ under O(3) transformations by writing out the transformation of the vectors explicitly including the indices.

(b) Show that any O(3)-invariant tensor σ satisfies $[D^V(g), \sigma] = 0$ for all $g \in O(3)$ and explain that it therefore must be proportional to the Kronecker delta δ_{ij} .

(c) Determine the subgroup of O(3) transformations that leave the tensor

$$\sigma_{ij} = \delta_{ij} + a \left(\delta_{i2} \delta_{j2} + \delta_{i3} \delta_{j3} \right)$$

invariant, for a nonzero constant a.

Exercise 3

Consider the Galilei transformations T(a, b, v) that act in a (1 + 1)-dimensional space as follows:

$$\begin{array}{rcl} x & \mapsto & x' = x + vt + a \\ t & \mapsto & t' = t + b \end{array}$$

for space translation a, time translation b and velocity v (all real numbers).

(a) Write T(a, b, v) in the form of a three-dimensional matrix representation by letting the transformations act on vectors (x, + 1) and explain whether it is irreducible or not.

(b) Write down the inverse of T(a, b, v).

(c) Explain why there is no two-dimensional matrix representation for this group in which the translations are represented non-trivially.

	1 7 C G LAR R G C 160	a b(Ha) o c d(Ha) o o o e(Ha)	6 d c a ²⁺¹ c(+a) ac+bd (+e) & c Ca+bd(+e) C ² +d ² (+a) o 0 C ² (+a)
a b a c d	a king o Editor o		