Exam Symmetry in Physics

Date June 29, 2023
Time 8:30-10:30
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- Use of a calculator is allowed
- All subquestions (a, b, c) of the threc excrcises have equal weight
- Illegible answers will be not be graded
- Good luck!

Exercise 1

Consider the methane molecule CH_{4} depicted in the figures and its rotational symmetry group $G_{M} \cong \Lambda_{4}$.

(a) Identify all rotations that leave the methane molecule invariant. Reflections do not need to be considered.
(b) Divide the group elements of G_{M} into conjugacy classes (e.g. using geometric arguments) and determine the dimensions of the irreducible representations of G_{M}.
(c) Determine the characters of the three-dimensional vector representation of G_{M} and use them to determine whether the symmetries allow for an invariant vector, such as a permanent electric dipole moment of the molecule.

Exercise 2

Consider the group $O(3)$ of real orthogonal 3×3 matrices and its action on a rank- 2 tensor $\sigma_{i j}(i, j$ can take the values 1,2 , and 3). The defining (or vector) representation of $O(3)$ is the irreducible representation denoted by D^{V}.
(a) Show that $\sigma_{i j}=x_{i} y_{j}$ transforms according to $D^{V}(g) \sigma D^{V}(g)^{T}$ under $O(3)$ transformations by writing out the transformation of the vectors explicitly including the indices.
(b) Show that any $O(3)$-invariant tensor σ satisfies $\left[D^{V}(g), \sigma\right]=0$ for all $g \in O(3)$ and explain that it therefore must be proportional to the Kronecker delta $\delta_{i j}$.
(c) Determine the subgroup of $O(3)$ transformations that leave the tensor

$$
\sigma_{i j}=\delta_{i j}+a\left(\delta_{i 2} \delta_{j 2}+\delta_{i 3} \delta_{j 3}\right)
$$

invariant, for a nonzero constant a.

Exercise 3

Consider the Galilei transformations $T(a, b, v)$ that act in a $(1+1)$-dimensional space as follows:

$$
\begin{aligned}
x & \mapsto x^{\prime}=x+v t+a \\
t & \mapsto t^{\prime}=t+b
\end{aligned}
$$

for space translation a, time translation b and velocity v (all real numbers).
(a) Write $T(a, b, v)$ in the form of a three-dimensional matrix representation by letting the transformations act on vectors $(x, \notin 1)$ and explain whether it is irreducible or not.
(b) Write down the inverse of $T(a, b, v)$.
(c) Explain why there is no two-dimensional matrix representation for this group in which the translations are represented non-trivially.

